Research on Wave and Energy Reduction Performance of Floating Breakwater Based on S-Shaped Runner

Author:

Bao Lingjie,Wang Ying,Jiang Chuhua,Chen Junhua,Li Hao,Wang Shenghu

Abstract

Aiming at the breeding environment where the construction of marine pastures requires low wind and waves, a floating breakwater (FB) with a Savonius type (referred to as S type) runner with wave absorption and energy reduction function is studied for wave absorption and energy reduction in aquaculture sea areas. The wave-absorbing and energy-reducing performance of the floating breakwater is studied by the method of combining numerical simulation and experiment. Using Star-CCM+ numerical simulation software, based on linear wave theory and energy conservation law, using overlapping grid technology, calling DFBI model, second-order time discretization, a three-dimensional flow field model of the floating breakwater was established and numerically simulated. At the same time, a floating breakwater physical test system was developed for experimental verification, the transmission wave and the conversion power consumption of the S-shaped runner under different wave heights and different periods were measured, and the results Please carefully check the accuracy of names and affiliations. of numerical simulation and physical experiments were comprehensively evaluated. The research results show that the floating breakwater based on the S-shaped runner has the functions of reducing the wave height and reducing the wave energy, which have guiding significance for practical engineering.

Funder

the Ministry of National Key R&D Project of the People's Republic of China Science and Technology Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3