Charging and Discharging Current Characteristics of Polypropylene Film under Varied Electric Fields

Author:

Xing Zhaoliang,Tian Fuqiang,Guo Shaowei,Zhang ShutingORCID,Li Fei,Liang Jieyi,Cui Huize,Dai Xiying

Abstract

Charging and discharging current behavior under high DC electric field in polypropylene (PP) film is closely related to the charge transport and accumulation process, which has an important effect on the electrical insulating properties of PP. In this paper, the dependence of the charging and discharging current of polypropylene films on time and electric field has been comprehensively studied. The results showed that the transient and steady current values of the charging and discharging process increase with the increase of electric field. Dependence of the charging current on the electric field conformed well to the space charge limited current (SCLC) theory with a transition electric field of 270 kV/mm, at which the charge transport changed from ohmic conduction to SCLC conduction. The carrier mobility derived from the discharging current became significantly smaller with increase of the charging electric field. The charge accumulation after discharging was derived from the integration of the difference of the charging and discharging current and it showed an increase with the electric field and increased sharply above a certain threshold electric field (the same as the transition electric field in SCLC theory). It was proved that the conduction current and charge accumulation evolution and dependence on the electric field were mainly determined by the balance between the electrode charge injection process and the bulk conduction process.

Funder

the State Key Laboratory of Advanced Power Transmission Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference21 articles.

1. Biaxially Stretched Polypropylene Film for Capacitors;Ishida;Japan Patent,2019

2. Relationship Between Structure and Dielectric Properties of Bi-oriented Isotactic Polypropylene Films for Capacitors;Kahouli;Proceedings of the IEEE International Conference on Solid Dielectrics,2013

3. Metallized Polypropylene Film Capacitor https://eu.mouser.com/c/passive-components/capacitors/film-capacitors/?type=Metallized%20Polypropylene

4. Lifetime investigation and prediction of metallized polypropylene film capacitors

5. Effect of Crystallization Regulation on the Breakdown Strength of Metallized Polypropylene Film Capacitors

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3