Rock CT Image Super-Resolution Using Residual Dual-Channel Attention Generative Adversarial Network

Author:

Shan LiqunORCID,Liu ChengqianORCID,Liu Yanchang,Kong Weifang,Hei Xiali

Abstract

Because of its benefits in terms of high speed, non-destructiveness, and three-dimensionality, as well as ease of integration with computer simulation, computed tomography (CT) technology is widely applied in reservoir geology research. However, rock imaging is restricted by the device used as there is not a win–win for both the image receptive field and corresponding resolution. Convolutional neural network-based super-resolution reconstruction has become a hot topic in improving the performance of CT images. With the help of a convolution kernel, it can effectively extract characteristics and ignore disturbance information. The dismal truth is that convolutional neural networks still have numerous issues, particularly unclear texture details. To address these challenges, a generative adversarial network (RDCA-SRGAN) was designed to improve rock CT image resolution using the combination of residual learning and a dual-channel attention mechanism. Specifically, our generator employs residual attention to extract additional features; similarly, the discriminator builds on dual-channel attention and residual learning to distinguish generated contextual information and decrease computational consumption. Quantitative and qualitative analyses demonstrate that the proposed model is superior to earlier advanced frameworks and is capable to constructure visually indistinguishable high-frequency details. The quantitative analysis shows our model contributes the highest value of structural similarity, enriching the more detailed texture information. From the qualitative analysis, in enlarged details of the reconstructed images, the edges of the images generated by the RDCA-SRGAN can be shown to be clearer and sharper. Our model not only performs well in subtle coal cracks but also enriches more dissolved carbonate and carbon minerals. The RDCA-SRGAN has substantially enhanced the reconstructed image resolution and our model has great potential to be used in geomorphological study and exploration.

Funder

Natural Science Foundation of Hebei Province

Northeast Petroleum University Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis;Coenen;Proceedings of the 2004 International Symposium of the Society of Core Analysts,2004

2. Deep learning of multi-resolution X-ray micro-CT images for multi-scale modelling;Jackson;arXiv,2021

3. A Compact Upwind Flux With More Physical Insight for Wave Propagation in 3-D Poroelastic Media

4. Characterization of pore systems in carbonate using 3D X-ray computed tomography;Andriamihaja;Pet. Coal,2016

5. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3