Computational Fluid Dynamics Simulation Approach for Scrubber Wash Water pH Modelling

Author:

Ristea Marian,Popa Adrian,Scurtu Ionut Cristian

Abstract

In the current article, we will use a CFD approach for the scrubber wash water dilution simulation, by considering the current MEPC (Marine Environment Protection Committee, a subsidiary of IMO—International Maritime Organization) regulations that are in force. The necessity for scrubber wash water pH modelling and its importance in the current environmental framework is emphasized. The presented 3D model is considered as a 400 mm hydraulic diameter fluid domain with two outlets and a discharge water flow rate of 3050 m3/h for the considered pH value of 3, obtained within a state-of-the-art exhaust gas scrubber solution developed by a major EGCS (Exhaust Gas Cleaning Systems) supplier. The CFD study was developed by considering a k-ε turbulence model. In order to achieve accurate results, a structured mesh with two levels of refinement volumes was realized. Based on the obtained data and the various parameters discussed, the paper presents a way to investigate the optimal results for further analytical research of the scrubber washwater dilution process within the exhaust gas cleaning system.

Funder

Jalmare Oy

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference21 articles.

1. Physical Chemistry;Atkins,2006

2. An Introduction to FLUID Dynamics;Batchelor,2001

3. Some remarks on the concept of acids and bases;Bronsted;Recl. Trav. Chim. Des Pays-Bas,1923

4. Numerical Simulation and Validation in Scrubber Wash Water Discharge from Ships

5. Assessing ocean alkalinity for carbon sequestration

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3