2DH Numerical Study of Solitary Wave Processes around an Idealized Reef-Fringed Island

Author:

Liu Weijie12ORCID,Qian Feng3,Ning Yue14,Cheng Rongliang5

Affiliation:

1. Ocean College, Zhejiang University, Zhoushan 316021, China

2. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China

3. Zhejiang Yuquan Environmental Technology Engineering Co., Ltd., Huzhou 313023, China

4. College of History, Geography and Tourism, Shangrao Normal University, Shangrao 334000, China

5. Nanjing Hydraulic Research Institute, Nanjing 210029, China

Abstract

In order to better understand the role of coral reefs around an isolated island in mitigating tsunami hazards, this study performed a horizontally two-dimensional (2DH) numerical study of tsunami-like solitary wave propagation and run-up around an idealized reef-fringed island. The shock-capturing Boussinesq wave model, the FUNWAVE-TVD is used in the present study and well-validated with existing experimental data for its robustness in predicting 2DH solitary wave processes around an island. Based on the validated model, the typical solitary propagation process around the reef-fringed island and the effects of morphological and hydrodynamic parameters on the maximum run-up heights were systematically investigated. It is found that coral reefs can effectively reduce maximum run-up heights around an isolated island. The reef flat’s water depth, reef flat width, and reef surface roughness are the main factors affecting maximum run-up heights around an island, while the fore-reef slope has little impact. For the idealized reef-fringed island in this study, sea-level rise will cause coral reefs to lose their protective capability on the lee side, and the presence of coral reefs may even enhance tsunami hazards around an island when the reef flat width is very narrow or coral bleaching happens.

Funder

Zhejiang Provincial Natural Science Foundation of China

State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3