Degradation of Diclofenac by Bisulfite Coupled with Iron and Manganous Ions: Dual Mechanism, DFT-Assisted Pathway Studies, and Toxicity Assessment

Author:

Wang Hongbin123ORCID,Kuang Shijie1,Su Youlun1,Ren Xu134,Yang Bowen1,Sun Yongliang2

Affiliation:

1. School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China

2. Sichuan Academy of Eco-Environmental Sciences, Chengdu 610041, China

3. Sichuan City Solid Waste Energy and Building Material Conversion Technology Engineering, Chengdu University, Chengdu 610106, China

4. Postdoctoral Research Station in Environmental Science and Engineering, Sichuan University, Chengdu 610065, China

Abstract

Diclofenac (DCF) is often detected in diverse aquatic bodies, and ineffective management can lead to detrimental effects on human health and ecosystems. In this study, degradation of DCF by Fe(III) and Mn(II) activating bisulfite (BS) was investigated. In the Fe(III)/Mn(II)/BS system, 93.4% DCF was degraded at 200 μM BS within 120 s, and additional research on 1000 μM BS achieved 88.4% degradation efficacy. Moreover, kinetics fitting of DCF degradation with the different BS concentrations was studied to find the two highest reaction rates (200 and 1000 μM, kobs = 0.0297 and 0.0317 s−1, respectively). Whereafter, SO4•− and Mn(III) were identified as the main active species at these two concentrations, respectively. Density functional theory (DFT) calculations, molecular frontier orbital theory, and surface electrostatic potential (ESP) forecast electrophilic attack sites. DCF degradation pathways by radical and non-radical ways were proposed by attack site prediction and thirteen intermediates identified by UPLC-QTOF-MS. ECOSAR software 2.2 was used for toxicity assessment. This work studied DCF degradation by the Fe(III)/Mn(II)/BS process in the presence of different concentrations of BS, providing a new insight into water purification.

Funder

Sichuan City Solid Waste Energy and Building Materials Conversion Technology Engineering Research Center, Chengdu University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3