Recovery of Time Series of Water Volume in Lake Ranco (South Chile) through Satellite Altimetry and Its Relationship with Climatic Phenomena

Author:

Fuentes-Aguilera Patricio1ORCID,Rodríguez-López Lien1ORCID,Bourrel Luc2,Frappart Frédéric3ORCID

Affiliation:

1. Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepción 4030000, Chile

2. Géosciences Environnement Toulouse, UMR 5563, Université de Toulouse, CNRS-IRD-OMP-CNES, 31000 Toulouse, France

3. ISPA, UMR 1391 INRAE, Bordeaux Sciences Agro, 33140 Villenave-d’Ornon, France

Abstract

In the context of escalating climate change-induced impacts on water resources, robust monitoring tools are imperative. Satellite altimetry, benefiting from technical improvement such as the use of SAR and InSAR techniques and tracking modes considering topography, is emerging as a crucial means of estimating lake levels, data that are fundamental to understanding climate dynamics. This study delves into the use of satellite-altimetry-determined water levels to analyze changes in water storage and superficial area in Lake Ranco, in south-central Chile, from 1995 to 2023. The main objective is to provide valuable information for water-resource management and policy formulation. Leveraging AlTiS software (v2.2.9-0-gf5938ab), radar-altimetry data from the missions ERS-2, ENVISAT, SARAL, and Sentinel-3A were processed, generating a complete time series of water levels. The lake-level data were complemented by the bathymetric data for the lake to obtain the variation in the area and volume in the period 1995–2023. These results were analyzed with respect to hydrometeorological data from the study area, such as precipitation, temperature, relative humidity, and potential evapotranspiration. Additionally, the effects of ENSO (ENSO 3.4 index) and the Pacific Decadal Oscillation index (PDO) were considered. Results reveal a strong correlation between altimetry-derived lake levels and observed in situ data, with a mean square error of 0.04 m, a coefficient of determination of 0.99, an index of agreement of 0.99, and a Kling−Gupta efficiency of 0.90. The analysis of climatic variables showed that variations in lake level coincide with changes in precipitation within the study area and also showed the influence of variations in temperature and potential evapotranspiration. Additionally, the effects of the ENSO phenomenon can be seen within the study area for its cold phase (i.e., La Niña) in the 2010–2012 period and for its warm phase (i.e., El Niño) in the 2015–2016 period, with a decrease and increase in precipitation, respectively. These effects were enhanced when the cold and warm phases of the ENSO and PDO phenomena occured. The successful application of satellite altimetry demonstrated in this study underscores its critical role in advancing our understanding and management of water resources amidst changing climate scenarios.

Funder

CNES SWOT-TOSCA

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3