Affiliation:
1. Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
Abstract
The performance of microalgae-based wastewater treatment processes for ammonium-N (NH4+-N) removal depends on the maintenance of a favorable pH that is critical for minimizing nitrogen escape in the form of free ammonia (NH3) and preventing high-NH3 or extreme-pH stress. This study developed a CO2-inorganic carbon (CO2-IC) buffering system that automatically stabilized pH with the supply of a carbon source for efficient photosynthetic reclamation of NH4+-N by a euryhaline microalga Tetraselmis subcordiformis. The soluble (NaHCO3) and insoluble (CaCO3 and MgCO3) ICs were compared for this purpose. The pH was well controlled in the range of 6.5~8.5 in the CO2-IC system, which was suitable for the photosynthetic growth of T. subcordiformis. The NH4+-N (100 mg/L) was almost completely removed in three days, with the maximum removal rate of 60.13 mg N/L/day and minimal N escape of 19.65% obtained in the CO2-NaHCO3 system. The CO2-IC system also restricted the release of extracellular organic matter by preventing stress conditions. The CO2-NaHCO3 system enabled the highest “normal” starch production suitable for fermentation, while the CO2-CaCO3/MgCO3 system facilitated high-amylose starch accumulation that was conducive to producing bio-based materials and health-promoting ingredients. The proteins accumulated in T. subcordiformis were of good quality for animal feeds.
Funder
National Natural Science Foundation of China
Fund of Science and Technology on Reactor Fuel and Materials Laboratory
“Chemical Star” Excellent Young Talents Cultivation Program of Sichuan University
Cultivation project of Science and Technology Leading Talent of Sichuan University
Innovation and Entrepreneurship Training Program for Undergraduates of Sichuan University
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献