A Novel Method for Intelligent Single Fault Detection of Bearings Using SAE and Improved D–S Evidence Theory

Author:

Lu Jianguang,Zhang HuanORCID,Tang Xianghong

Abstract

In order to realize single fault detection (SFD) from the multi-fault coupling bearing data and further research on the multi-fault situation of bearings, this paper proposes a method based on features self-extraction of a Sparse Auto-Encoder (SAE) and results fusion of improved Dempster–Shafer evidence theory (D–S). Multi-fault signal compression features of bearings were extracted by SAE on multiple vibration sensors’ data. Data sets were constructed by the extracted compression features to train the Support Vector Machine (SVM) according to the rule of single fault detection (R-SFD) this paper proposed. Fault detection results were obtained by the improved D–S evidence theory, which was implemented via correcting the 0 factor in the Basic Probability Assignment (BPA) and modifying the evidence weight by Pearson Correlation Coefficient (PCC). Extensive evaluations of the proposed method on the experiment platform datasets showed that the proposed method could realize single fault detection from multi-fault bearings. Fault detection accuracy increases as the output feature dimension of SAE increases; when the feature dimension reached 200, the average detection accuracy of the three sensors for bearing inner, outer, and ball faults achieved 87.36%, 87.86% and 84.46%, respectively. The three types’ fault detection accuracy—reached to 99.12%, 99.33% and 98.46% by the improved Dempster–Shafer evidence theory (IDS) to fuse the sensors’ results—is respectively 0.38%, 2.06% and 0.76% higher than the traditional D–S evidence theory. That indicated the effectiveness of improving the D–S evidence theory by evidence weight calculation of PCC.

Funder

Science and Technology Major Project of Guizhou Province

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3