Author:
Xiong Liyan,Wang Cheng,Huang Xiaohui,Zeng Hui
Abstract
Although within-cluster information is commonly used in most clustering approaches, other important information such as between-cluster information is rarely considered in some cases. Hence, in this study, we propose a new novel measure of between-cluster distance in subspace, which is to maximize the distance between the center of a cluster and the points that do not belong to this cluster. Based on this idea, we firstly design an optimization objective function integrating the between-cluster distance and entropy regularization in this paper. Then, updating rules are given by theoretical analysis. In the following, the properties of our proposed algorithm are investigated, and the performance is evaluated experimentally using two synthetic and seven real-life datasets. Finally, the experimental studies demonstrate that the results of the proposed algorithm (ERKM) outperform most existing state-of-the-art k-means-type clustering algorithms in most cases.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献