Toxicological Effects of Mercuric Chloride Exposure on Scenedesmus quadricauda

Author:

Ge Yuheng,Liu Xudong,Nan Fangru,Liu Qi,Lv Junping,Feng Jia,Xie ShulianORCID

Abstract

Mercuric chloride (HgCl2) is a common heavy-metal pollutant widely used in commercial products and industry, but its excessive use and uncontrolled discharge have caused great harm to aquatic environments and human health. To research the mechanisms of HgCl2 toxicity in aquatic organisms, this study cultured the green alga Scenedesmus quadricauda in a gradient of HgCl2 concentrations (0, 0.1, 0.3, 0.5, 0.7, and 0.9 mg/L) for 9 days. The results showed that: (1) when the concentrations of HgCl2 were high (≥0.7 mg/L), the toxic effects completely inhibited the growth of algal cells, the culture liquid changed from green to light yellow, and cells aggregated and sank to the bottom. Submicroscopic structural imaging showed that at 0.9 mg/L HgCl2, the algal cells were seriously damaged and obvious plasma–wall separation occurred. Furthermore, the arrangement of photosynthetic lamellae became disordered and the nuclei and protein nuclei faded or even disappeared. (2) When the concentrations of HgCl2 were low and medium (≤0.5 mg/L), the activity of superoxide dismutase (SOD) in algal cells increased in the first five days, but the degree of increase was smaller than in the control group. However, under high HgCl2 concentrations (≥0.7 mg/L), the activity of SOD began to decrease sharply on the seventh day. The activity of peroxidase (POD) decreased more obviously than that of SOD. (3) Under medium and high HgCl2 concentrations (≥0.5 mg/L), the content of malondialdehyde (MDA) in algal cells increased over time, and had not decreased again by the last day of measurement. In contrast, the contents of total protein (TP) and soluble sugar (SS) both exhibited decreasing trends under high HgCl2 concentrations. (4) When the HgCl2 concentrations were ≥0.7 mg/L, the content of photosynthetic pigments in algal cells decreased, and the light quantum yield of PS Ⅱ decreased. At the same time, as culture time progressed, the photosynthetic electron transfer and energy-conversion efficiency were seriously damaged and photosynthesis never returned to normal levels. This research provides a reference for understanding the mechanism by which HgCl2 pollution affects aquatic ecosystems and may help with pollution management in the future.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3