Spatial and Temporal Variation in Vegetation Response to Runoff in the Ebinur Lake Basin

Author:

Yao Chenglong12,Wang Yuejian12,Yang Guang34ORCID,Xia Baofei12,Tong Yongpeng12,Yao Junqiang5ORCID,Chen Huanhuan12

Affiliation:

1. College of Science, Shihezi University, Shihezi 832000, China

2. Key Laboratory of Oasis Town and Mountain Basin System Ecology of Xinjiang Production and Construction Corps, Shihezi 832000, China

3. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China

4. Key Laboratory of Cold and Arid Regions Eco-Hydraulic Engineering of Xinjiang Production & Construction Corps, Shihezi 832000, China

5. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, China

Abstract

The response of spatial and temporal vegetation changes to runoff is a complex process involving the interaction of several factors and mechanisms. Timely and accurate vegetation and runoff change information is an important reference for the water cycle and water resource security. The Ebinur Lake Basin is representative of arid areas worldwide. This basin has been affected by climate change and human activities for a long time, resulting in the destruction of the basin’s ecological environment, and especially its vegetation. However, there have been few studies that have focused on watershed vegetation and runoff changes. Therefore, we combined Generalized Information System and remote sensing technology, used SWAT and InVEST models based on the Google Earth Engine platform, and used the vegetation normalization index method to calculate the spatial distribution of vegetation and water production from 2000 to 2020 in Ebinur Lake. Sen’s trend analysis and the M–K test were used to calculate vegetation and runoff trends. The relationship between vegetation and runoff variation was studied using bivariate spatial autocorrelation based on sub-basins and plant types. The results showed that the Z parameter in the InVEST model spanned from 1–2. The spatial distribution of the water yield in a watershed is similar to the elevation of the watershed, showing a trend of higher altitude leading to a higher water yield. Its water yield capacity tends to saturate at elevations greater than 3500 m. The local spatial distribution of the Normalized Difference Vegetation Index(NDVI) values and water yield clustering in the watershed were consistent and reproducible. Interannual runoff based on sub-basins correlated positively with the overall NDVI, whereas interannual runoff based on plant type correlated negatively with the overall NDVI.

Funder

the Special project for innovation and development of Shihezi University

the National Natural Science Foundation of China

Xinjiang Production and Construction Corps] grant number

The Third Xinjiang Scientific Expedition Program

the Program for Youth Innovation and Cultivation of Talents of Shihezi University

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3