High-Bandwidth Heterodyne Laser Interferometer for the Measurement of High-Intensity Focused Ultrasound Pressure

Author:

Wang Ke1ORCID,Xing Guangzhen1,Yang Ping1,Wang Min1,Wang Zheng2,Tian Qi1

Affiliation:

1. Division of Mechanics and Acoustics, National Institute of Metrology, Beijing 100029, China

2. Ultra-Precision Optoelectronic Instrument Engineering Center, School of Instrument Science and Engineering, Harbin Institute of Technology, Harbin 150080, China

Abstract

As a high-end medical technology, high-intensity focused ultrasound (HIFU) is widely used in cancer treatment and ultrasonic lithotripsy technology. The acoustic output level and safety of ultrasound treatments are closely related to the accuracy of sound pressure measurements. Heterodyne laser interferometry is applied to the measurement of ultrasonic pressure owing to its characteristics of non-contact, high precision, and traceability. However, the upper limit of sound pressure measurement is limited by the bandwidth of the interferometer. In this paper, a high-bandwidth heterodyne laser interferometer for the measurement of high-intensity focused ultrasound pressure is developed and tested. The optical carrier with a frequency shift of 358 MHz is realized by means of an acousto-optic modulator. The selected electrical devices ensure that the electrical bandwidth can reach 1.5 GHz. The laser source adopts an iodine frequency-stabilized semiconductor laser with high-frequency spectral purity, which can reduce the influence of spectral purity on the bandwidth to a negligible level. The interference light path is integrated and encapsulated to improve the stability in use. An HIFU sound pressure measurement experiment is carried out, and the upper limit of the sound pressure measurement is obviously improved.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Fundamental Research Funds of National Institute of Metrology

State Administration for Market Regulation Science and Technology Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference22 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3