Precise Focal Spot Positioning on an Opaque Substrate Based on the Diffraction Phenomenon in Laser Microfabrication

Author:

Jing Xian12ORCID,Zhao Pengju2,Wang Fuzeng2,Han Mingkun2,Lin Jieqiong2ORCID

Affiliation:

1. College of Electronic Science and Engineering, Jilin University, Changchun 130012, China

2. Jilin Provincial Key Laboratory of Micro/Nano and Ultra-Precision Manufacturing, School of Mechatronic Engineering, Changchun University of Technology, Changchun 130012, China

Abstract

The precise positioning of the laser focal spot on the substrate is an important issue for laser microfabrication. In this work, a diffraction pattern-based focal spot positioning method (DFSPM) is proposed to achieve the precise positioning of the laser focal spot on opaque substrates. A series of diffraction patterns of laser focus under-positioning, exact positioning and over-positioning were obtained to investigate the cross-section light distribution of the laser focal spot. According to the monotonic tendency of FWHM to exhibit light intensity at the focal spot cross-section away from the focal plane, the FWHM threshold of polynomial fitted curves was used to determine the exact positioning of laser focus. The ascending scanning method was used to obtain the diffraction patterns at various vertical positions and the FWHM threshold of light distribution at the exact position. The polynomial fitted curves verify the FWHM monotonic tendency of light intensity distribution at the focal spot cross-section along the optical axis. Precise positioning can be achieved with a 100 nm adjustment resolution. This work was expected to provide references for laser microfabrication on opaque materials.

Funder

Science and Technology Department of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3