Developing a Combined Drought Index to Monitor Agricultural Drought in Sri Lanka

Author:

Bayissa YaredORCID,Srinivasan RaghavanORCID,Joseph GeorgeORCID,Bahuguna Aroha,Shrestha Anne,Ayling SophieORCID,Punyawardena Ranjith,Nandalal K. D. W.ORCID

Abstract

Developing an agricultural drought monitoring index through integrating multiple input variables into a single index is vital to facilitate the decision-making process. This study aims to develop an agricultural drought index (agCDI) to monitor and characterize the spatial and temporal patterns of drought in Sri Lanka. Long-term (1982 to 2020) remote sensing and model-based agroclimatic input parameters—normalized difference vegetation index (NDVI), land surface temperature (LST), 3-month precipitation z-score (stdPCP), and evaporative demand drought index (EDDI)—were used to develop agCDI. The principal component analysis (PCA) approach was employed to qualitatively determine the grid-based percentage contribution of each input parameter. The agCDI was apparently evaluated using an independent dataset, including the crop yield for the major crop growing districts and observed streamflow-based surface runoff index (SRI) for the two main crop growing seasons locally, called Yala (April to September) and Maha (October to March), using 20-years of data (from 2000 to 2020). The results illustrate the good performance of agCDI, in terms of predominantly capturing and characterizing the historic drought conditions in the main agricultural producing districts both during the Yala and Maha seasons. There is a relatively higher chance of the occurrence of moderate to extreme droughts in the Yala season, compared to the Maha season. The result further depicts that relatively good correlation coefficient values (> 0.6) were obtained when agCDI was evaluated using a rice crop yield in the selected districts. Although the agCDI correlated well with SRI in some of the stations (>0.6), its performance was somehow underestimated in some of the stations, perhaps due to the time lag of the streamflow response to drought. In general, agCDI showed its good performance in capturing the spatial and temporal patterns of the historic drought and, hence, the model can be used to develop agricultural drought monitoring and an early warning system to mitigate the adverse impacts of drought in Sri Lanka.

Funder

the Japan-Bank Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference66 articles.

1. Satellite-Based Meteorological and Agricultural Drought Monitoring for Agricultural Sustainability in Sri Lanka

2. Economic costs of drought and farmers' adaptation strategies: evidence from Sri Lanka

3. Sri Lanka-Joint Assessment of Drought Impacts on Food Security and Livelihoods, March 2017

4. Develop Drought Monitoring in Sri Lanka Using Standard Precipitation Index (SPI);Manesha;Sri Lanka J. Meteorol,2015

5. Chapter 6 Drought Risk Reduction in the Dry Zone of Sri Lanka

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-Driven Drought Management System: A Turkish Case Study;2023 4th International Informatics and Software Engineering Conference (IISEC);2023-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3