Temporal Scour Variations at Permeable and Angled Spur Dikes under Steady and Unsteady Flows

Author:

Farshad Reza,Kashefipour Seyed Mahmood,Ghomeshi Mehdi,Oliveto GiuseppeORCID

Abstract

Spur dikes are river protection structures typically used for flow diversion from erodible banks. However, scouring might be a severe problem that compromises their stability and, consequently, their hydraulic function. This paper aims to study the maximum scour depth at permeable and angled spur dikes under hydrographs of different duration. Experiments were carried out in a rectangular channel 10 m long, 0.76 m wide, and 0.6 m deep. The mobile bed was made of nearly uniform sand with a median grain size of 0.8 mm. A total of 36 new experiments were performed with a detailed data collection over the time (i.e., 216 datasets), which could provide a useful contribution to the topic. The impact of the spur dike orientation angle, θ, and the degree of permeability, φ, on the temporal scour evolution were explored. Results were found physically consistent and revealed that the spur dike permeability implies a significant attenuation of the scouring processes in comparison to the impermeable spur dikes and generally its effect is more beneficial than that from a favorable orientation angle. The differences in percentage between the maximum scour depth for impermeable spur dikes and the maximum scour depths for various degrees of spur dike permeability were found ranging from 44% (at φ = 33% and θ = 60°) up to 88% (at φ = 66% and θ = 120°). Other results include the effect of the hydrograph base-time on the scour depth and the comparison between scouring processes under steady and unsteady flow conditions. By quadrupling the hydrograph base-time, keeping constant the peak and base flood discharges, the maximum scour depths increased by about 29%, 42%, and 25% in case of impermeable spur dike, spur dike with 33% degree of permeability, and spur dike with 66% degree of permeability. Furthermore, starting from dimensional analysis a new empirical model (with coefficient of determination R2 equal to 0.94) is introduced to predict the time-dependent scour depth due to the passage of a flood wave. The model suggests that the main independent dimensionless variables which control local scour processes are: the densimetric Froude number, the time t normalized to the hydrograph base-time, the degree of permeability, and the orientation angle. These dimensionless variables would generalize the laboratory results to the real-world scenarios, although caution should always be taken because of possible scale effects.

Funder

Khuzestan Water and Power Authority

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3