The Sociodemographic Biases in Machine Learning Algorithms: A Biomedical Informatics Perspective

Author:

Franklin Gillian12ORCID,Stephens Rachel1,Piracha Muhammad1ORCID,Tiosano Shmuel1ORCID,Lehouillier Frank12,Koppel Ross13,Elkin Peter12

Affiliation:

1. Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14203, USA

2. Department of Veterans Affairs, Knowledge Based Systems and Western New York, Veterans Affairs, Buffalo, NY 14215, USA

3. Institute for Biomedical Informatics, Perelman School of Medicine, and Sociology Department, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Artificial intelligence models represented in machine learning algorithms are promising tools for risk assessment used to guide clinical and other health care decisions. Machine learning algorithms, however, may house biases that propagate stereotypes, inequities, and discrimination that contribute to socioeconomic health care disparities. The biases include those related to some sociodemographic characteristics such as race, ethnicity, gender, age, insurance, and socioeconomic status from the use of erroneous electronic health record data. Additionally, there is concern that training data and algorithmic biases in large language models pose potential drawbacks. These biases affect the lives and livelihoods of a significant percentage of the population in the United States and globally. The social and economic consequences of the associated backlash cannot be underestimated. Here, we outline some of the sociodemographic, training data, and algorithmic biases that undermine sound health care risk assessment and medical decision-making that should be addressed in the health care system. We present a perspective and overview of these biases by gender, race, ethnicity, age, historically marginalized communities, algorithmic bias, biased evaluations, implicit bias, selection/sampling bias, socioeconomic status biases, biased data distributions, cultural biases and insurance status bias, conformation bias, information bias and anchoring biases and make recommendations to improve large language model training data, including de-biasing techniques such as counterfactual role-reversed sentences during knowledge distillation, fine-tuning, prefix attachment at training time, the use of toxicity classifiers, retrieval augmented generation and algorithmic modification to mitigate the biases moving forward.

Funder

NIH NLM

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3