Experimental Investigation of the Effect of Temperature and Strain Rate on the Superplastic Deformation Behavior of Ti-Based Alloys in the (α+β) Temperature Field

Author:

Mosleh Ahmed,Mikhaylovskaya Anastasia,Kotov Anton,AbuShanab Waheed,Moustafa Essam,Portnoy Vladimir

Abstract

This paper presents the effect of temperature and strain rate on the superplastic deformation behavior of Ti-3%Mo-1%V-4%Al, Ti-4%V-6%Al, and Ti-1.8%Mn-2.5%Al alloys, which have different initial microstructures. The microstructure, before and after superplastic deformation in the deformation regimes that provided the maximum elongation, was analyzed. The deformation regimes, corresponding to the minimum strain hardening/softening effect, provided a higher elongation to failure due to their low tendency toward dynamic grain growth. As the values of stress became steady (σs), the elongation to failure and strain-hardening coefficient were analyzed under various temperature–strain rate deformation regimes. The analysis of variance of these values was performed to determine the most influential control parameter. The results showed that the strain rate was a more significant parameter than the temperature, with respect to the σs, for the investigated alloys. The most influential parameter, with both the elongation to failure and strain-hardening coefficient, was the temperature of the Ti-3%Mo-1%V-4%Al and Ti-1.8%Mn-2.5%Al alloys and the strain rate of the Ti-4%V-6%Al alloy.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3