Study of Nd Electrodeposition from the Aprotic Organic Solvent Dimethyl Sulfoxide

Author:

Bourbos Evangelos,Karantonis Antonis,Sygellou Labrini,Paspaliaris Ioannis,Panias DimitriosORCID

Abstract

The use of organic solvents in an electrolytic system for neodymium electrorecovery by electrolysis at low temperatures is studied in the current work. More specifically, an alternative route, that of the system of DMSO (Dimethyl sulfoxide) with dissolved NdCl3 has been researched and has given promising results. The study of this electrolytic system has been divided into two stages. Firstly, the characteristics of the electrolyte, the dissolution of NdCl3 in DMSO, the conductivity and the viscosity of NdCl3 solutions in DMSO at various temperatures, and the Nd complexation in the solution were studied and secondly, the electrolysis parameters and their impact on the Nd electrodeposition process were evaluated. Finally, the deposits were submitted to SEM-EDS (Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy) analysis and metallic Nd was confirmed to be electrodeposited by X-ray Photoelectron Spectroscopy (XPS) spectroscopy.

Funder

Seventh Framework Programme

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference26 articles.

1. European Commission, Study on the Review of the List of Critical Raw Materials. Critical Raw Materials Factsheets,2017

2. Promising applications of neodymium boron Iron magnets in electrical machines

3. Applications of Rare Earth Luminescent Materials;Le Mercier,2015

4. Metallothermic Rare Earth Metal Reduction;Davensport,2015

5. Review of High-Temperature Recovery of Rare Earth (Nd/Dy) from Magnet Waste

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3