Scandium and Titanium Recovery from Bauxite Residue by Direct Leaching with a Brønsted Acidic Ionic Liquid

Author:

Bonomi Chiara,Alexandri Alexandra,Vind Johannes,Panagiotopoulou Angeliki,Tsakiridis Petros,Panias DimitriosORCID

Abstract

In this study, bauxite residue was directly leached using the Brønsted acidic ionic liquid 1-ethyl-3-methylimidazolium hydrogensulfate. Stirring rate, retention time, temperature, and pulp density have been studied in detail as the parameters that affect the leaching process. Their optimized combination has shown high recovery yields of Sc, nearly 80%, and Ti (90%), almost total dissolution of Fe, while Al and Na were partially extracted in the range of 30–40%. Si and rare earth element (REEs) dissolutions were found to be negligible, whereas Ca was dissolved and reprecipitated as CaSO4. The solid residue after leaching was fully characterized, providing explanations for the destiny of REEs that remain undissolved during the leaching process. The solid residue produced after dissolution can be further treated to extract REEs, while the leachate can be subjected to metal recovery processes (i.e., liquid–liquid extraction) to extract metals and regenerate ionic liquid.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3