A Novel Recognition by the E3 Ubiquitin Ligase of HSV-1 ICP0 Enhances the Degradation of PML Isoform I to Prevent ND10 Reformation in Late Infection

Author:

Jan Fada Behdokht1ORCID,Guha Udayan1ORCID,Zheng Yi1ORCID,Reward Eleazar1ORCID,Kaadi Elie1,Dourra Ayette1,Gu Haidong1ORCID

Affiliation:

1. Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA

Abstract

Upon viral entry, components of ND10 nuclear bodies converge with incoming DNA to repress viral expression. The infected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) contains a RING-type E3 ubiquitin ligase that targets the ND10 organizer, PML, for proteasomal degradation. Consequently, ND10 components are dispersed and viral genes are activated. Previously, we reported that ICP0 E3 differentiates two similar substrates, PML isoforms I and II, and demonstrated that SUMO-interaction has profound regulatory effects on PML II degradation. In the present study, we investigated elements that regulate the PML I degradation and found that: (i) two regions of ICP0 flanking the RING redundantly facilitate the degradation of PML I; (ii) downstream of the RING, the SUMO-interaction motif located at residues 362–364 (SIM362–364) targets the SUMOylated PML I in the same manner as that of PML II; (iii) upstream of the RING, the N-terminal residues 1–83 mediate PML I degradation regardless of its SUMOylation status or subcellular localization; (iv) the reposition of residues 1–83 to downstream of the RING does not affect its function in PML I degradation; and (v) the deletion of 1–83 allows the resurgence of PML I and reformation of ND10-like structures late in HSV-1 infection. Taken together, we identified a novel substrate recognition specific for PML I, by which ICP0 E3 enforces a continuous PML I degradation throughout the infection to prevent the ND10 reformation.

Funder

NIH

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3