Unveiling the Feasibility of Coalbed Methane Production Adjustment in Area L through Native Data Reproduction Technology: A Study

Author:

Chang Qifan1ORCID,Fan Likun2,Zheng Lihui1,Yang Xumin1,Fu Yun3,Kan Zixuan4,Pan Xiaoqing5

Affiliation:

1. College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China

2. Changqing Oilfield Company, China National Petroleum Corporation, Xi’an 710018, China

3. College of Safety and Ocean Engineering, China University of Petroleum (Beijing), Beijing 102249, China

4. College of Information Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China

5. Beijing LihuiLab Energy Technology Co., Ltd., Beijing 102200, China

Abstract

In the L Area, big data techniques are employed to manage the principal controlling factors of coalbed methane (CBM) production, thereby regulating single-well output. Nonetheless, conventional data cleansing and the use of arbitrary thresholds may result in an overemphasis on certain controlling factors, compromising the design and feasibility of optimization schemes. This study introduces a novel approach that leverages raw data without data cleaning and eschews artificial threshold setting for controlling factor identification. The methodology supplements previously overlooked controlling factors, proposing a more pragmatic CBM production adjustment scheme. In addition to the initial five controlling factors, this approach incorporates three additional ones, namely, dynamic fluid level state, drainage velocity, and fracturing displacement. This study presents a practical application case study of the proposed approach, demonstrating its ability to reduce reservoir damage during the coal fracturing process and enhance output through seal adjustments. Utilizing the full spectrum of original data and minimizing human intervention thresholds enriches the information available for model training, thereby facilitating the development of a more efficacious model.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3