Simulation and Control Design of a Midrange WPT Charging System for In-Flight Drones

Author:

Allama Oussama1,Habaebi Mohamed Hadi1ORCID,Khan Sheroz2ORCID,Islam Md. Rafiqul1,Alghaihab Abdullah3

Affiliation:

1. IoT & Wireless Communication Protocols Laboratory, Department of Electrical Computer Engineering, International Islamic University, Kuala Lumpur 53100, Malaysia

2. Department of Electrical and Renewable Energy Engineering, Unaizah Colleges of Engineering, Unaizah 56453, Saudi Arabia

3. Department of Electrical Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

Drones, or unmanned aerial vehicles (UAVs), have emerged as an indispensable tool across numerous industries due to their remarkable versatility, efficiency, and capabilities. Notwithstanding all these traits, drones are still limited by battery life. In this paper, we propose a genuine in-flight charging method without landing. The charging system consists of three orthogonal coils, among which the receiving coil is connected to the drone. The development of the model for wireless dynamic charging systems is achieved by integrating the receiver trajectory and velocity in the model. Furthermore, the model is significantly enhanced by introducing the concept of the positioning mutual coupling function for the receiver trajectory; thus, it is possible to simulate a genuine continuous trajectory for UAVs and link it to the systems’ total input power consumption. The developed control algorithm can direct the magnetic field resultant to track the exact trajectory of the drone. The real-time simulation of the multiparameter discrete extremum-seeking control (ESC) algorithm on the (DSP) F28379D hardware shows that the input power is maximized up to 12 W in a response time of 2 ms for a drone-hovering velocity of 8 m/s without any feedback.

Funder

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Efficient High-Power Density Shore WPT System Based on S-N Topology;2023 IEEE 6th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE);2023-12-15

2. FFT-FCA based Inductive WPT system for Effective coupling with high Air-gap on EVs Charging applications;2023 International Conference on Energy, Materials and Communication Engineering (ICEMCE);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3