Deployment and Allocation Strategy for MEC Nodes in Complex Multi-Terminal Scenarios

Author:

Li Danyang,Mao YuxingORCID,Chen Xueshuo,Li Jian,Liu Siyang

Abstract

Mobile edge computing (MEC) has become an effective solution for insufficient computing and communication problems for the Internet of Things (IoT) applications due to its rich computing resources on the edge side. In multi-terminal scenarios, the deployment scheme of edge nodes has an important impact on system performance and has become an essential issue in end–edge–cloud architecture. In this article, we consider specific factors, such as spatial location, power supply, and urgency requirements of terminals, with respect to building an evaluation model to solve the allocation problem. An evaluation model based on reward, energy consumption, and cost factors is proposed. The genetic algorithm is applied to determine the optimal edge node deployment and allocation strategies. Moreover, we compare the proposed method with the k-means and ant colony algorithms. The results show that the obtained strategies achieve good evaluation results under problem constraints. Furthermore, we conduct comparison tests with different attributes to further test the performance of the proposed method.

Funder

Yunnan Power Gird Co.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online task offloading algorithm based on multi-objective optimization caching strategy;Computer Networks;2024-05

2. Research on SoC Architecture Model and its Application in BMS Scenario;2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia);2023-07-07

3. IoT Intelligent Sensing Terminal Test Platform;2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia);2023-07-07

4. Architecture Design of Reconfigurable Sensing Terminal Platform Considering Distributed Energy;2023 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia);2023-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3