Affiliation:
1. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Abstract
Peaches/nectarines (Prunus persica L.) are widely cultivated worldwide. As with other species, the sugar content is the most important trait for fruit quality, especially for precocious cultivars. Most fruits need to improve their sugar content in order to be more profitable under fierce market competition. 5-Aminolevulinic acid (ALA), a naturally occurring δ-amino acid, has been shown to improve leaf photosynthesis and fruit quality, especially sugar content. However, the mechanisms are not clear. The objective of this study is to determine the effects of exogenous ALA on leaf photosynthesis, assimilate transport, and sugar accumulation during fruit development. We used the field-cultivated precocious nectarine ‘Zhongyoutao 4’ and potted cultivated peach ‘Zhongai 33’ as materials, whereas in the second experiment, we used 14C radiolabeling to trace 14C fixation in leaves, transport in branches, and distribution in different organs. The results showed that ALA significantly enhanced the photosynthetic gas exchange capacity, and the effects were maintained for at least one month. The results of the 14C radiolabel experiment showed that ALA enhanced 14C fixation in leaves, promoted the transport to fruits, and reduced the allocation rate of young leaves. This suggests that ALA enlarges “source” volume and strengthens “sink” competition; therefore, assimilate translocation to fruits is promoted. It was observed that sucrose contributed the main saccharide for peach fruit quality at maturity, which might not be converted from glucose or fructose but from starch degradation. ALA improved starch accumulation in the young fruits as well as degradation during maturity. The RT-qPCR showed that the expression of most genes involved in sugar metabolism did not correlate or even negatively correlate with fruit sucrose content. However, the expressions of SWEET1/6/7/8/15/16/17 were highly correlated with the sucrose content, and exogenous ALA treatment up-regulated the gene expression at fruit maturity, suggesting they might play an important role in fruit sugar accumulation. These results provide important theoretical support for ALA application in fruit quality improvement, as well as a regulatory mechanism study on sugar accumulation in fruits.
Funder
Jiangsu Agricultural Science and Technology Innovation Fund
Natural Science Foundation of China
Jiangsu Special Fund for Frontier Foundation Research of Carbon Peaking and Carbon Neutralization
Priority Academic Program Development of Jiangsu Higher Education Institutions
Reference70 articles.
1. Li, S.H. (2013). Peach Tree Science, China Agriculture Press.
2. Current situation and development suggestions of peach industry in China;Wang;China Fruits,2021
3. Problems and countermeasures of nectarine industry development;Lei;Fruit Growers’ Friend,2016
4. Shu, H.R. (1993). Physiology of Fruit Tree Cultivation, China Agriculture Press.
5. Sugar metabolism in stone fruit: Source-sink relationships and environmental and agronomical effects;Falchi;Front. Plant Sci.,2020
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献