Abstract
We consider nonlinear Robin problems driven by the p-Laplacian plus an indefinite potential. In the reaction, we have the competing effects of a parametric concave (that is, ( p − 1 ) -sublinear) term and of a convex (that is, ( p − 1 ) -superlinear) term which need not satisfy the Ambrosetti–Rabinowitz condition. We prove a "bifurcation-type" theorem describing in a precise way the dependence the dependence of the set of positive solutions on the parameter λ > 0 . In addition, we show the existence of a smallest positive solution u λ * and determine the monotonicity and continuity properties of the map λ ↦ u λ * .
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献