Applying Visual Cryptography to Enhance Text Captchas

Author:

Yan XuehuORCID,Liu Feng,Yan Wei Qi,Lu YuliangORCID

Abstract

Nowadays, lots of applications and websites utilize text-based captchas to partially protect the authentication mechanism. However, in recent years, different ways have been exploited to automatically recognize text-based captchas especially deep learning-based ways, such as, convolutional neural network (CNN). Thus, we have to enhance the text captchas design. In this paper, using the features of the randomness for each encoding process in visual cryptography (VC) and the visual recognizability with naked human eyes, VC is applied to design and enhance text-based captcha. Experimental results using two typical deep learning-based attack models indicate the effectiveness of the designed method. By using our designed VC-enhanced text-based captcha (VCETC), the recognition rate is in some degree decreased.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient XOR-based visual cryptography scheme with lossless reconfigurable algorithms;International Journal of Distributed Sensor Networks;2022-04

2. Generating Adversarial Robust Defensive CAPTCHA (GARD-CAPTCHA) in Convolutional Neural Networks;Software Engineering Research, Management and Applications;2022

3. Discussion on the Application Pattern of Research-And-Discussion Teaching in the Teaching of Computer Courses for Postgraduates;2021 3rd International Workshop on Artificial Intelligence and Education (WAIE);2021-11

4. A Hybrid Visual Cryptography Method using Sigmoid Function for Security Enhancement in Gray Scale Images;Indian Journal of Artificial Intelligence and Neural Networking;2021-06-10

5. A Hybrid Visual Cryptography Method using Sigmoid Function for Security Enhancement in Gray Scale Images;Indian Journal of Artificial Intelligence and Neural Networking;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3