Annual Shoot Segmentation and Physiological Age Classification from TLS Data in Trees with Acrotonic Growth

Author:

Lecigne BastienORCID,Delagrange SylvainORCID,Taugourdeau OlivierORCID

Abstract

The development of terrestrial laser scanning (TLS) has opened new avenues in the study of trees. Although TLS provides valuable information on structural elements, fine-scale analysis, e.g., at the annual shoots (AS) scale, is currently not possible. We present a new model to segment and classify AS from tree skeletons into a finite set of “physiological ages” (i.e., state of specialization and physiological age (PA)). When testing the model against perfect data, 90% of AS year and 99% of AS physiological ages were correctly extracted. AS length-estimated errors varied between 0.39 cm and 2.57 cm depending on the PA. When applying the model to tree reconstructions using real-life simulated TLS data, 50% of the AS and 77% of the total tree length are reconstructed. Using an architectural automaton to deal with non-reconstructed short axes, errors associated with AS number and length were reduced to 5% and 12%, respectively. Finally, the model was applied to real trees and was consistent with previous findings obtained from manual measurements in a similar context. This new method could be used for determining tree phenotype or for analyzing tree architecture.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3