Exergy Optimization of a Solar Collector in Flat Plate Shape Equipped with Elliptical Pipes Filled with Turbulent Nanofluid Flow: A Study for Thermal Management

Author:

Rostami SaraORCID,Sepehrirad Mohammad,Dezfulizadeh Amin,Hussein AhmedORCID,Shahsavar Goldanlou Aysan,Shadloo MostafaORCID

Abstract

In this paper, forced convection of a multiwalled carbon nanotube (MWCNT)–water nanofluid (NF) in a new flat plate solar collector (FPSC) equipped with elliptical pipes instead of circular ones is investigated. The three-dimensional conservation equations were solved in the domain with the finite volume method (FVM) based on the semi-implicit method for pressure linked equations (SIMPLE) algorithm. The laminar-turbulent range of the Reynolds number (Re) and the volume fraction of the NF (ϕ) were 50–12,000 and 0–0.1, respectively. The optimization process was accomplished through the comparison of diverse parameters to attain the optimal case with the highest exergy efficiency. In this study, it was concluded that, in the case of using elliptical pipes instead of circular tubes, the time that the fluid was inside the FPSC increased, which led to an increase in the outlet temperature, while the exergy efficiency of the FPSC increased. Additionally, it was observed that using elliptical pipes enhanced the outlet fluid temperature, energy efficiency, and exergy efficiency. Generally, while the trend of exergy efficiency variation with effective parameters was rising, applying elliptical pipes caused the efficiency to increase. In addition, the exergy efficiency variation decreased when these parameters were changed. The highest value of exergy efficiency was 7.1%. On the other hand, for each specific FPSC, there was a unique mass flow rate at which the exergy efficiency reached its maximum value, and for higher mass flow rates, the efficiency was slightly diminished and then remained unchanged. Finally, the highest exergy efficiency was achieved for ϕ = 0.10%.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3