An Adaptive Virtual Impedance Method for Grid-Connected Current Quality Improvement of a Single-Phase Virtual Synchronous Generator under Distorted Grid Voltage

Author:

Zhong Caomao12,Zhang Zhi1ORCID,Zhu Anan1,Liang Benxin2

Affiliation:

1. Department of Electrical Engineering and Automation, Dongguan University of Technology, Dongguan 523808, China

2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

Abstract

The proportion of distributed generation systems in power grids is increasing, leading to the gradual emergence of weak grid characteristics. Moreover, using voltage-sourced grid-connected inverters can enhance the stability of a weak grid. However, due to the presence of background harmonics in weak grids, the grid voltage can cause significant distortions in the grid-connected current, which adversely affects the quality of the grid-connected current. This paper begins by briefly introducing the principle of the virtual synchronous generator (VSG). Then, the output current of the voltage source inverter is analyzed to elucidate the mechanism of harmonic current generation. Considering the distortion in the grid-connected current of the voltage source grid-connected inverter caused by background harmonics in the grid voltage, a harmonic current suppression strategy based on an adaptive virtual harmonic resistor is proposed. The proposed strategy employs a signal separation module based on multiple second-order generalized integrators connected through a cross-feedback network. This module effectively separates the fundamental and harmonic currents from the grid-connected current, extracts the amplitudes of the fundamental and harmonic currents through coordinate transformation, and adaptively adjusts the virtual harmonic resistance magnitude through the negative feedback control of the harmonic content (the ratio of the harmonic current amplitude to the fundamental current amplitude). These measures are used to enhance the quality of the grid-connected current. Additionally, the stability of the system is analyzed using the root locus of the open-loop transfer function. Finally, the effectiveness of the proposed method is validated through a combination of MATLAB/Simulink simulations and experimental results.

Funder

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3