A Two-Level Variable Neighborhood Descent for a Split Delivery Clustered Vehicle Routing Problem with Soft Cluster Conflicts and Customer-Related Costs

Author:

Xu Rui1,Huang Yumiao1,Xiao Wei1

Affiliation:

1. School of Business, Hohai University, Nanjing 211100, China

Abstract

This paper introduces Split Delivery Clustered Vehicle Routing Problem with Soft cluster conflicts and Customer-related costs (SDCVRPSC) arising in automotive parts of milk-run logistics with supplier cluster distribution in China. In SDCVRPSC, customers are divided into different clusters that can be visited by multiple vehicles, but each vehicle can only visit each cluster once. Penalty costs are incurred when traveling between clusters. The transportation cost of a route is calculated as the maximum direct shipment cost between customers on the route plus the total drop costs. The SDCVRPSC aims to minimize the sum of transportation costs and penalty costs by determining the assignment of customers to vehicles and the visiting order of clusters. We propose an integer linear programming model and a two-level variable neighborhood descent algorithm (TLVND) that includes two-stage construction, intensification at cluster and customer levels, and a perturbation mechanism. Experimental results on designed SDCVRPSC benchmark instances demonstrate that TLVND outperforms the Gurobi solver and two adapted algorithms at the business operation level. Moreover, a real case study indicates that TLVND can bring significant economic savings compared to expert experience decisions. TLVND has been integrated into the decision support system of the case company for daily operations.

Funder

National Natural Science Foundation of China

Shenzhen Natural Science Fund

Guangdong Provincial Key Laboratory

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3