Gated Recurrent Graph Convolutional Attention Network for Traffic Flow Prediction

Author:

Feng Xiaoyuan1,Chen Yue1,Li Hongbo1,Ma Tian2,Ren Yilong134ORCID

Affiliation:

1. School of Transportation Science and Engineering, Beihang University, Beijing 102206, China

2. School of Automation Science and Engineering, Beihang University, Beijing 100191, China

3. Beihang Hangzhou Innovation Institute Yuhang, Hangzhou 310023, China

4. Zhongguancun Laboratory, Beijing 100094, China

Abstract

Traffic flow prediction is an important function of intelligent transportation systems. Accurate prediction results facilitate traffic management to issue early congestion warnings so that drivers can avoid congested roads, thus directly reducing the average driving time of vehicles, which means less greenhouse gas emissions. However, traffic flow data has complex spatial and temporal correlations, which makes it challenging to predict traffic flow accurately. A Gated Recurrent Graph Convolutional Attention Network (GRGCAN) for traffic flow prediction is proposed to solve this problem. The model consists of three components with the same structure, each of which contains one temporal feature extractor and one spatial feature extractor. The temporal feature extractor first introduces a gated recurrent unit (GRU) and uses the hidden states of the GRU combined with an attention mechanism to adaptively assign weights to each time step. In the spatial feature extractor, a node attention mechanism is constructed to dynamically assigns weights to each sensor node, and it is fused with the graph convolution operation. In addition, a residual connection is introduced into the network to reduce the loss of features in the deep network. Experimental results of 1-h traffic flow prediction on two real-world datasets (PeMSD4 and PeMSD8) show that the mean absolute percentage error (MAPE) of the GRGCAN model is as low as 15.97% and 12.13%, and the prediction accuracy and computational efficiency are better than the baselines.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Plan

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3