Enhanced Simultaneous Nitrogen and Phosphorus Removal Performance of the AGS-SBR Reactor Based on the Effects of the C/N Ratio and Microbial Community Change

Author:

Su Lei1,Li Yafeng2,Chao Lei2,Li Qianqian12,Hu Zhiqiang3

Affiliation:

1. School of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China

2. School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China

3. Fujian Chenxi Information Technology Group Co., Ltd., Harbin 150090, China

Abstract

In recent years, the development of AGS technology will likely lead to a new direction in wastewater treatment development in the future. Traditional sewage treatment technology has been unable to meet the increasingly strict quality standards of wastewater treatment and limited land requirements. AGS technology may be a new method to replace traditional sewage treatment technology. However, the stable operation of AGS technology is a major obstacle to the popularization and development of this technology. The C/N ratio is an important parameter affecting the stability and simultaneous nitrogen and phosphorus removal of AGS technology. In order to enhance the nitrogen and phosphorus removal capacity of a low-load aerobic granular sludge SBR (AGS-SBR) system, changes in the morphology, EPS, and simultaneous removal of organic matter, nitrogen, and phosphorus in the AGS system were studied by regulating different C/N ratios (20, 15, 10, 5). The changes in the microbial community in the system were deeply analyzed by high-throughput sequencing technology. The results showed that different C/N ratios have a significant effect on the nitrogen removal rate of AGS but have little effect on the removal rate of organic matter and phosphorus. When the C/N ratio was reduced to 10, it was conducive to the stability of the low-load AGS-SBR system. An effective C/N ratio promoted the secretion of EPS by microorganisms, and the increase in the PN value contributed to the stability of the granular sludge, which became smooth and compact. The main functional genus in the system were norank_f__Saprospiraceae, Tetrasphaera, Ellin6067, and Pseudomonas. In addition, the simultaneous nitrogen removal performance of the system was significantly improved.

Funder

Major Science and Technology Project of Water Pollution Control and Treatment

the Scientific Research Project of the Educational Department of Liaoning Province of China

the Scientific Research and Development Fund of Shenyang Urban Construction University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3