Distributed Optimal Coordination of a Virtual Power Plant with Residential Regenerative Electric Heating Systems

Author:

Yang Guixing12,Liu Haoran3,Wang Weiqing1,Chen Junru1,Lei Shunbo3

Affiliation:

1. Engineering Research Center of Ministry of Education for Renewable Energy Generation and Grid Connection Technology, Xinjiang University, Urumqi 830046, China

2. State Grid Xinjiang Electric Power Co., Ltd., Urumqi 830002, China

3. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China

Abstract

Renewable energy sources play a key role in the transition towards clean and affordable energy. However, grid integration of renewable energy sources faces many challenges due to its intermittent nature. The controllability of aggregated regenerative electric heating load provides a method for the consumption of renewable energy sources. Based on the concept of a virtual power plant (VPP), this paper considers the cooperative energy management of aggregated residential regenerative electric heating systems. First, considering physical constraints, network constraints, and user comfort, comprehensive modeling of a VPP is given to maximize its social benefits. In addition, this VPP is investigated as a participant in day-ahead energy and reserve markets. Then, to solve this problem, a distributed coordination approach based on an alternating direction method of multipliers (ADMM) is proposed, which can respect the independence of users and preserve their privacy. Finally, the simulation results illustrate the effectiveness of our algorithm.

Funder

National Key R&D Program of China

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Engineering Application of Distributed Clean Energy System Based on Ant Colony Algorithm;2023 3rd Asian Conference on Innovation in Technology (ASIANCON);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3