Performance Enhancement of Photovoltaic-Thermal Modules Using a New Environmentally Friendly Paraffin Wax and Red Wine-rGO/H2O Nanofluid

Author:

Nabi Hossein1ORCID,Gholinia Mosayeb2,Khiadani Mehdi3,Shafieian Abdellah3

Affiliation:

1. Department of Mechanical Engineering, Mazandaran University of Science and Technology, Babol 47166-85635, Iran

2. Department of Mechanical Engineering, Babol Noushirvani University of Technology, Babol 47148-71167, Iran

3. School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia

Abstract

Photovoltaic/thermal systems are one of the most efficient types of solar collectors because they absorb solar radiation and generate electricity and heat simultaneously. For the first time, this paper presents an investigation into the impact of red wine-rGO/H2O nanofluid and paraffin wax on the thermohydraulic properties of a photovoltaic/thermal system. The study focuses on three innovative nonlinear arrangements of the serpentine tubes. The effects of these materials and configurations are analyzed through numerical simulations. To improve the performance, environmentally friendly materials, including red wine-rGO/H2O nanofluid and paraffin wax, have been used. Various performative parameters such as electrical and thermal efficiency of the photovoltaic/thermal system, exergy, and nanofluid concentration were investigated. The results demonstrated a significant enhancement in the system’s performance when using innovative serpentine tubes instead of simple tubes for the fluid flow path. The use of paraffin C18 increases electrical efficiency, while the use of paraffin C22 improves thermal efficiency. Moreover, the incorporation of phase change materials along with the utilization of innovative geometries in the serpentine tube led to a notable improvement in the outlet temperature of the fluid, increasing it by 2.43 K. Simultaneously, it substantially reduced the temperature of the photovoltaic cells, lowering it by 21.55 K. In addition, the new model demonstrated significant improvements in both thermal and electrical efficiency compared to the simple model. Specifically, the maximum thermal efficiency improvement reached 69.2%, while the maximum electrical efficiency improvement reached 11.7%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3