A MILP Model for Optimal Conductor Selection and Capacitor Banks Placement in Primary Distribution Systems

Author:

Gallego Pareja Luis A.1ORCID,López-Lezama Jesús M.2ORCID,Gómez Carmona Oscar3ORCID

Affiliation:

1. Department of Electrical Engineering, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil

2. Research Group in Efficient Energy Management (GIMEL), Departamento de Ingeniería Eléctrica, Universidad de Antioquia, Calle 67 No. 53-108, Medellín 050010, Colombia

3. Facultad de Tecnología, Universidad Tecnológica de Pereira, Cr 27 No 10-02, Pereira 660003, Colombia

Abstract

Power distribution systems (PDS) are the infrastructure and equipment used to distribute electricity from the transmission system to end-users, such as homes and businesses. PDS are usually designed to operate in a radial mode, where power flows from one substation to the end user through a series of feeders. The extension of distribution lines to attend new customers along with the growing demand for electricity result in increased energy losses and voltage reductions. Various solutions have been proposed to solve these issues, such as selecting the optimal set of conductors, optimizing the placement of voltage regulators, using capacitor banks, reconfiguring the distribution system, and implementing distributed generation. A well-known approach for reducing energy losses and enhancing voltage profile is the optimal conductor selection (OCS). While this can be beneficial, it may not be sufficient to fully reduce technical losses and improve the system voltage profile; therefore, it must be combined with other strategies. This paper presents a new approach that combines the OCS with the optimal placement of capacitor banks (OPCB) to minimize technical losses and improve the voltage profile in PDS. The main contribution of this paper is the integration of these two problems into a single mixed integer linear programming (MILP) model, therefore guaranteeing the achievement of globally optimal solutions. Three test systems of 27, 69, and 85 buses were used to illustrate the effectiveness of the proposed modeling approach. The results indicate that the combination of OCS and OPCB effectively minimizes energy losses and enhances the voltage profile. In all cases, the solutions obtained by the proposed MILP approach were better than those previously reported through metaheuristics for the combined OCS and OPCB problem.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3