Application of Machine Learning in Fuel Cell Research

Author:

Su Danqi1,Zheng Jiayang1,Ma Junjie1,Dong Zizhe1,Chen Zhangjie1,Qin Yanzhou1ORCID

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China

Abstract

A fuel cell is an energy conversion device that utilizes hydrogen energy through an electrochemical reaction. Despite their many advantages, such as high efficiency, zero emissions, and fast startup, fuel cells have not yet been fully commercialized due to deficiencies in service life, cost, and performance. Efficient evaluation methods for performance and service life are critical for the design and optimization of fuel cells. The purpose of this paper was to review the application of common machine learning algorithms in fuel cells. The significance and status of machine learning applications in fuel cells are briefly described. Common machine learning algorithms, such as artificial neural networks, support vector machines, and random forests are introduced, and their applications in fuel cell performance prediction and optimization are comprehensively elaborated. The review revealed that machine learning algorithms can be successfully used for performance prediction, service life prediction, and fault diagnosis in fuel cells, with good accuracy in solving nonlinear problems. Combined with optimization algorithms, machine learning models can further carry out the optimization of design and operating parameters to achieve multiple optimization goals with good accuracy and efficiency. It is expected that this review paper could help the reader comprehend the state of the art of machine learning applications in fuel fuels and shed light on further development directions in fuel cell research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3