Long-Term Nitrogen Addition Accelerates Litter Decomposition in a Larix gmelinii Forest

Author:

Wang Miao1,Liu Guancheng1,Xing Yajuan12,Yan Guoyong1ORCID,Wang Qinggui1

Affiliation:

1. School of Life Sciences, Qufu Normal University, 57 Jingxuan West Road, Qufu 273165, China

2. Department of Agricultural Resource and Environment, Heilongjiang University, 74 Xuefu Road, Harbin 150080, China

Abstract

Elevated atmospheric N deposition has the potential to alter litter decomposition patterns, influencing nutrient cycling and soil fertility in boreal forest ecosystems. In order to study the response mechanism of litter decomposition in Larix gmelinii forest to N deposition, we established four N addition treatments (0, 25, 50, 75 kg N ha−1 yr−1) in the Greater Khingan Mountains region. The results showed that (1) both needle and mixed leaf litter (Betula platyphylla and Larix gmelinii) exhibited distinct decomposition stages, with N addition accelerating decomposition for both litter types. The decomposition of high-quality (low C/N ratio) mixed leaf litter was faster than that of low-quality needle litter. (2) Mixed leaf litter increased the decomposition coefficients of litter with lower nutrients. (3) All N addition treatments promoted the decomposition of needle litter, while the decomposition rate of mixed leaf litter decreased under high-N treatment. (4) N addition inhibited the release of N and P in needle litter and promoted the release of N in mixed leaf litter, while high-N treatment had no positive effect on the release of C and P in mixed leaf litter. Our research findings suggest that limited nutrients in litter may be a key driving factor in regulating litter decomposition and emphasize the promoting effect of litter mixing and nitrogen addition on litter decomposition.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3