Performance Evaluation and Comparison of Modified Spectral Mixture Analysis Method for Different Images of Landsat Series Satellites

Author:

Huang Xiaodong,Liu Wenkai,Han Yuping,Wang Chunying,Wang Han,Hu Sai

Abstract

Urban impervious surface is considered one of main factors affecting urban heat island and urban waterlogging. It is commonly extracted utilizing the original linear spectral mixture analysis (LSMA) model. However, due to the deficiencies of this method, many improvements and modifications have been proposed. In this paper, a modified dynamic endmember linear spectral mixture analysis (DELSMA) model was introduced and tested in Zhengzhou, China, using different images of Landsat series satellites. The accuracy and performance of DELSMA model was evaluated in terms of R M S E , r and R 2 . Results show that (1) the DELSMA model performed equally well for Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper (ETM+) images, and obtained better accuracy by using Landsat-8 Operational Land Imager (OLI) than Landsat TM/ETM+; (2) the DELSMA model achieved a better performance than the original LSMA model consistently, using images of Landsat from different sensors. Based exclusively on the overall accuracy reports, the DELSMA model proved to be a more efficient method for extracting impervious surface. Our study will provide a reliable method of impervious surface estimation for the urban planner and management in monitoring urban expansion, revealing urban heat island, and estimating urban surface runoff, using time-series Landsat imagery.

Funder

National key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impervious surface extraction and spatiotemporal analysis in the main urban area of Zhengzhou;Second International Conference on Geographic Information and Remote Sensing Technology (GIRST 2023);2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3