Abstract
Inner Mongolia, as a fragile ecological zone in northern China, is prone to severe fires due to natural forces and intensive human disturbances. The development of a fire risk assessment system at the finer spatial scale is not sufficient in this region. In this study, we obtained the data of burned areas and fire hotspots numbers for Inner Mongolia from the Terra/Aqua Moderate-resolution Imaging Spectroradiometer data (MCD45A1 and MOD14A1/MYD14A1, 2002~2016). These fire maps were used to determine the fire spatial and temporal variability, as well as the interactions with environmental controls (climatic, vegetation, topography, and anthropic characteristics) derived in geographic information system (GIS) layers. Based on this, the fire-causing variables were selected as the dependent variables for model building, whereas data on burned area and number of fire hotspots were used for model validation. The fire risk assessment map was then generated in a 500 × 500 m grid cell using an analytic hierarchy process approach and a GIS technique. This work could be easily used for the ultimate aim of supporting fire management.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献