A Study on the Improvement of Double-Skin Facade Operation for Reducing Heating Load in Winter

Author:

Sung Uk-Joo,Kim Seok-Hyun

Abstract

A double-skin facade makes it possible to gain irradiance through the glass on the outer side in summer, and to increase the temperature of air flowing in the cavity so as to induce the flow of air current. Therefore, a double-skin facade is able to reduce the load of the outer skin, which is delivered from the outside to the inside in summer, and to serve as a buffer space for the internal and external environments in winter, and thereby prevent heat loss from the building envelope. Theoretical analysis was conducted to review the heat effects of a double-skin facade and to evaluate the performance of a plan for indoor load reduction. This study carried out a field measurement of a building with a double-skin facade and then analyzed the thermal phenomenon occurring in between the outer skin of the outside and the skin of the inside facing the building surface, according to the effects of irradiance going into the double-skin facade cavity. In order to propose an indoor air conditioning energy reduction plan using preheated air through the double-skin facade, this study utilized a building simulation to be implemented on the target building and then analyzed the effects of the improvement plan for the double-skin facade. A simulation model was suggested that implemented the aforementioned airflow network and analyzed the ventilation performance and energy performance according to the application of alternative plans and thermal effect. To find the actual state of operation of the double-skin facade in winter, this study measured the target building. A solar chimney-based double-skin facade was analyzed in winter. As a result, with the application of a solar chimney and a rise in its height, the available capacity of relatively larger solar heat increased, and therefore the proposed plan had excellent performance in terms of heating energy saving. When the thermal effect was applied to the solar chimney, the heating energy use effect of the solar irradiance of the double-skin facade was larger. When thermal effect was applied to a three-floor solar chimney, the heating energy use increased to about 7.6 times higher than that of the original performance of the double-skin facade.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3