Application of Cloud Model to Evaluation of Forest Soil Fertility: A Case in Chinese Fir Plantations in Southern China

Author:

Guo Jiahuan,Feng Huili,Sun Jiejie,Cao Penghe,Wang WeifengORCID,Chen Hong,Yu Yuanchun

Abstract

Soil nutrients are of great significance for maintaining forest growth and ensuring land productivity. A comprehensive scientific evaluation of soil fertility is helpful for sustainable forest management. There are many uncertainties in traditional evaluation methods, that is fuzziness and randomness, which often lead to a large deviation of the evaluation results. In order to comprehensively consider the fuzziness and randomness of soil fertility evaluation, the cloud model was introduced to evaluate the soil fertility of Chinese fir plantations. The cloud model is an uncertain transformation model which can combine a qualitative description with a quantitative calculation as well as reflect the randomness and fuzziness of the principle. It is an effective tool for realizing qualitative and quantitative conversion. The accuracy of the model was evaluated with the Namerow integrated index method, and the results were compared with previous studies. The results showed that the soil fertility was grade II (Ex = 0.653), medium; soil pH was grade II (Ex = 4.59), strongly acidic; soil organic matter (OM) was grade V (Ex = 33.40), rich; total nitrogen (TN) was grade V (Ex = 1.53), rich; total phosphorus (TP) was grade III (Ex = 0.49), poor; total potassium (TK) was grade IV (Ex = 17.10), medium; available nitrogen (AN) was grade V (Ex = 128.30), rich; available phosphorus (AP) was grade II (Ex = 4.10), very poor; and available potassium (AK) was grade III (Ex = 52.73), poor. The degree of artificial influence of soil nutrients in Chinese fir plantations was ranked AN > AK > OM > TK > pH > TN > TP = AP. The soil fertility of the Chinese fir plantation was comprehensively evaluated by the cloud model and the evaluation results were unbiased and reliable. This method makes up for the shortcomings of traditional methods and provides new ideas for soil fertility evaluation. We suggest that this cloud model could be extended to other regions in the future and hope that there will be an article to compare several different statistical techniques.

Funder

The National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3