Bi-Objective Optimization of Vessel Speed and Route for Sustainable Coastal Shipping under the Regulations of Emission Control Areas

Author:

Zhao Yuzhe,Fan YujunORCID,Zhou Jingmiao,Kuang Haibo

Abstract

To comply with the regulations of emission control areas (ECAs), most operators have to switch to low-sulfur fuels inside the ECAs. Besides, a low-carbon objective is essential for long-term environmental protection; thus, is regarded as important as making profit. Therefore, the operators start making speed and route decisions under the two objectives of minimizing carbon emissions and maximizing profit. Drawing on existing methods, this paper formulates the profit and carbon emissions in sustainable coastal shipping, investigates the speed and route principles, and determines the best tradeoff between profit and carbon emissions. It is found that vessel speed should be set between emissions-optimum speed and profit-optimum speed, and the route must be selected in light of the speed decision. Next, the optimal choices of speed and route were examined under different scenarios and vessel types. The results show that the operation measures and objectives depend greatly on fuel price, vessel load, and vessel parameters. The operator should speed up the vessel if he/she wants to make more profit or if the scenario is favorable for profit making; e.g., low fuel price and high vessel load (LFHL). Large vessels should pursue more profit under LFHL conditions, without having to sail further outside the ECA. But this rule does not apply to small vessels. In addition, the operator should slow down the vessel inside the ECA and sail further, outside the ECA, with the growth in the price spread between marine gas oil (MGO) and heavy fuel oil (HFO), especially at a low HFO price. The research findings help operators to design operational measures that best suit the limit on sulfur content in fuel and the situation of the shipping market.

Funder

National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3