A Comprehensive Assessment of Two-Phase Flow Boiling Heat Transfer in Micro-Fin Tubes Using Pure and Blended Eco-Friendly Refrigerants

Author:

Vidhyarthi Neeraj Kumar1ORCID,Deb Sandipan1ORCID,Gajghate Sameer Sheshrao2ORCID,Pal Sagnik1ORCID,Das Dipak Chandra1ORCID,Das Ajoy Kumar1,Saha Bidyut Baran34ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Agartala, Jirania, Agartala 799046, Tripura, India

2. Department of Mechanical Engineering, G H Raisoni College of Engineering and Management, Pune 412207, Maharashtra, India

3. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0385, Japan

4. Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0385, Japan

Abstract

This review study examines flow boiling heat transfer in micro-fin tubes using mixed and pure refrigerants with zero ozone-depleting potential (ODP) and minimal global warming potential (GWP). This investigation focuses on the extraordinary relationship between heat transfer coefficients (HTCs) and vapor quality. Since the introduction of micro-fin heat exchanger tubes over 30 years ago, refrigerant-based cooling has improved significantly. Air conditioning and refrigeration companies are replacing widely used refrigerants, with substantial global warming impacts. When space, weight, or efficiency are limited, micro-fin heat exchangers with improved dependability are preferred. This review article discusses flow boiling concepts. The researchers used several refrigerants under different testing conditions and with varying micro-fin tube parameters. Micro-fin tubes are promising for improved heat transfer techniques. This tube increases the heat transfer area, fluid disturbance, flow speed, and direction owing to centrifugal force and HTC. As the focus shifts to improving heat transfer, pressure drop, mean vapor quality, and practical devices, this subject will grow more intriguing. A radical shift will reduce equipment size for certain traditional heat transfer systems and bring new products using micro-scale technologies. This suggested review effort helps comprehend saturation flow boiling through micro-fin tubes and find the right correlation for a given application. This domain’s challenges and future relevance are also discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference120 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3