Review of the Integration of Drying and Thermal Treatment Processes for Energy Efficient Reduction of Contaminants and Beneficial Reuse of Wastewater Treatment Plant Biosolids

Author:

Nylen Julian1,Sheehan Madoc1ORCID

Affiliation:

1. College of Science and Engineering, James Cook University, Townsville 4811, Australia

Abstract

Biosolids have been traditionally used as a beneficial resource in the agricultural industry. However, contaminants of emerging concern (CECs) threaten their reuse due to concerns of toxicity, bioaccumulation, and increased regulations on acceptable CEC concentrations in biosolids. The thermal treatment of biosolids has the potential to destroy/mineralize these contaminants as well as transform the biosolids into valuable biochar. However, the thermal processing of biosolids is highly energy intensive due to the energy costs associated with drying biosolids to the required moisture content for thermal processing. This article performs a brief review of the drying of biosolids from a physical and theoretical viewpoint. It also provides an overview of pyrolysis and gasification. It explains the impact that moisture can have on both the degradation of CECs and the products that can be obtained through the thermal treatment of biosolids. Additionally, model-based, lab-based, and pilot-scale examples of integrated drying and thermal treatment processes are reviewed. Key challenges, such as the need for co-pyrolysis and co-gasification, as well as the impact of biosolids composition on energetic viability, are identified.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference87 articles.

1. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown;Sharma;Waste Manag.,2017

2. Circular Economy in Wastewater Treatment Plant–Challenges and Barriers;Neczaj;Proceedings,2018

3. Prasad, M.N.V., and Shih, K. (2016). Environmental Materials and Waste, Academic Press.

4. Wang, L.K., Shammas, N.K., and Hung, Y.T. (2009). Biosolids Engineering and Management, Humana Press.

5. Characterization of organic compounds from biosolids of Buenos Aires city;Torri;J. Soil Sci. Plant Nutr.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3