Ensemble-Learning-Based Decision Support System for Energy-Theft Detection in Smart-Grid Environment

Author:

Mohammad Farah1ORCID,Saleem Kashif2ORCID,Al-Muhtadi Jalal12

Affiliation:

1. Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh 12372, Saudi Arabia

2. College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11461, Saudi Arabia

Abstract

Theft of electricity poses a significant risk to the public and is the most costly non-technical loss for an electrical supplier. In addition to affecting the quality of the energy supply and the strain on the power grid, fraudulent electricity use drives up prices for honest customers and creates a ripple effect on the economy. Using data-analysis tools, smart grids may drastically reduce this waste. Smart-grid technology produces much information, including consumers’ unique electricity-use patterns. By analyzing this information, machine-learning and deep-learning methods may successfully pinpoint those who engage in energy theft. This study presents an ensemble-learning-based system for detecting energy theft using a hybrid approach. The proposed approach uses a machine-learning-based ensemble model based on a majority voting strategy. This work aims to develop a smart-grid information-security decision support system. This study employed a theft-detection dataset to facilitate automatic theft recognition in a smart-grid environment (TDD2022). The dataset consists of six separate electricity thefts. The experiments are performed in four different scenarios. The proposed machine-learning-based ensemble model obtained significant results in all scenarios. The proposed ensemble model obtained the highest accuracy of 88%, 87.24%, 94.75%, and 94.70% with seven classes including the consumer type, seven classes excluding the consumer type, six classes including the consumer type, and six classes excluding the consumer type. The suggested ensemble model outperforms the existing techniques in terms of accuracy when the proposed methodology is compared to state-of-the-art approaches.

Funder

Deputyship for Research & Innovation, “Ministry of Education” in Saudi Arabia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Electricity Theft Detection Strategy Based on Dual-Time Feature Fusion and Deep Learning Methods;Energies;2024-01-05

2. Data-oriented ensemble predictor based on time series classifiers for fraud detection;Electric Power Systems Research;2023-10

3. Bearing Fault Detection in Induction Motor using Ensemble Learning;2023 5th International Conference on Energy, Power and Environment: Towards Flexible Green Energy Technologies (ICEPE);2023-06-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3