Determination of Shielding Effectiveness of a Subnanosecond High-Power EM Interference by an Enclosure with Aperture Using Time Domain Approach

Author:

Budnarowska Magdalena1ORCID,Mizeraczyk Jerzy1ORCID

Affiliation:

1. Department of Marine Electronics, Gdynia Maritime University, Morska 83, 81-225 Gdynia, Poland

Abstract

The most likely intentional high-power electromagnetic (EM) interference, threatening the operation of technologically advanced electronic infrastructure, will have the forms of sub- and nanosecond ultra-wideband (UWB) pulses, several hundred nanosecond pulses of attenuated sinusoids, and sub- and microsecond sinusoidal pulses. The protection of electronic objects against high-power EM pulses is provided by different types of metal enclosure shields with technological apertures, inside which sensitive electronic objects can be placed. These technological apertures allow external EM interference to penetrate into the enclosure, making the EM shielding imperfect. The EM protection against the EM pulses has been mainly assessed based on the so-called shielding effectiveness (SE) parameters. The SE parameters (SEe and SEm for the electric and magnetic fields, respectively) are useful for designing and comparing EM shields. In relatively small shielding enclosures, which have recently become the subject of interest, the SE parameters have been studied for relatively long transient EM interference, longer than 150 ns, i.e., for the EM pulses whose duration is much longer than the time that the pulse takes to pass the small enclosure. In this work, we dealt with an ultrashort transient interference pulse, the duration of which was much shorter than the pulse transit time through the enclosure. The intentional high-power EM subnanosecond UWB pulse is an example of such a pulse. For such an ultrashort pulse, we studied the EM shielding performance of a small size enclosure numerically (W:H:D = 455 mm:50 mm:463 mm) with aperture (W:H = 80 mm:30 mm). The ultrashort EM interference pulse of a Gaussian distribution of the electric and magnetic fields with amplitudes of 106 V/m and 2.68·103 A/m, respectively, applied in this study, had a duration of 0.0804 ns (FWHM). This means that the high-power EM interference pulse was about 18 times shorter than the time that it takes to pass the enclosure (equal to about 1.5 ns). Our numerical simulations of the subnanosecond high-power EM interference of the interior of the enclosure with aperture were performed in the time domain using the commercial code CST Microwave Studio. First of all, the time-domain simulations resulted in 2D and 3D images and 2D vector maps of the electric and magnetic fields, which visualized the temporal and spatial development of the EM field in the enclosure with aperture caused by the incident subnanosecond high-power EM interference. The development of the associated electric and magnetic fields proceeded in two phases: first in the form of EM waves and later as an interference pattern, traveling forth and back between the front and rear enclosure walls. Due to the energy loss through the aperture, suffered by the traveling EM field and the tendency of the EM field to be evenly distributed over time throughout the entire enclosure, the amplitudes of the EM field decreased about 30 times within 90 ns. Despite the energy loss, the EM field developed in the enclosure existed at least 1000 times longer than the subnanosecond duration of the incident EM pulse (i.e., at least 90 ns as demonstrated by the numerical calculation). Apart from the EM field development visualization, the time-domain simulation enabled easy tracking of the temporal behavior of the EM field in selected points in the enclosure. Such tracking showed that each point in the enclosure was passed by a series of subnanosecond EM pulses, called internal EM pulses, over a relatively long time (at least over the simulation duration of 90 ns). This means that over 90 ns, the points in the enclosure were repeatedly influenced by the series of about 500 subnanosecond internal EM pulses. The amplitudes of many of these pulses were only (3–5) times lower than that of the incident EM pulse. Despite the lower amplitudes, these internal pulses may cause severe EM interference inside the enclosure. This shows a substantial change in the nature of the EM interference caused by a subnanosecond high-power EM plane wave when a given point is not shielded (a single interference of the subnanosecond strong EM pulse) and when a given point is shielded by the enclosure with aperture (a repetitive interference of subnanosecond weaker EM pulses). With the time dependence of the EM field amplitudes obtained from the time-domain calculation at a selected point in the enclosure, it is easy to determine the SEe and SEm at that point as a function of time. In this way, evaluation of the local SEe and SEm (for selected points in the enclosure) can be performed. Moreover, the 2D and 3D images and 2D vector maps calculated in the time domain for a given time enabled easy calculation of the SEe and SEm maps for various times. Such maps, shown for the first time in this paper, give a more global view of the shielding properties of the enclosure with an aperture. This all shows the advantages of the use of the time-domain approach for studying EM shielding in the case of ultrashort EM interferences.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference32 articles.

1. Sabath, F. (2008, January 7–16). System Oriented View on High-Power Electromagnetic (HPEM) Effects and Intentional Electromagnetic Interference (IEMI). Proceedings of the XXIX URSI General Assembly, Chicago, IL, USA.

2. Classification of Intentional Electromagnetic Environments (IEME);Giri;IEEE Trans. Electromagn. Compat.,2004

3. (2005). Electromagnetic Compatibility (EMC)—Part 2-13: Environment—High-Power Electromagnetic (HPEM) Environments—Radiated and Conducted, First Edition 2005-03 (Standard No. IEC 61000-2-13).

4. An Overview of High-Power Electromagnetic (HPEM) Radiating and Conducting Systems;Giri;URSI Radio Sci. Bull.,2006

5. Kopp, C., and Pose, R. (2016). The Impact of Electromagnetic Radiation Considerations on Computer System Architecture, Dept of Computer Science, Monash University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3