A Review of Nanoparticle Material Coatings in Passive Radiative Cooling Systems Including Skylights

Author:

Gangisetty Gopalakrishna1ORCID,Zevenhoven Ron1ORCID

Affiliation:

1. Process and Systems Engineering, Åbo Akademi University, 20500 Turku, Finland

Abstract

Daytime passive radiative cooling (DPRC) has remained a challenge over the past decades due to the necessity of precisely defined materials with a significantly high emissivity of thermal radiation within the atmospheric transparent window wavelength range (8–13 μm) as well as high reflectivity in the solar spectrum (0.2–3 μm). Fortunately, recent advances and technological improvements in nanoscience and metamaterials are making it possible to create diverse metamaterials. This enables the production of DPRC in direct solar irradiation. The development of a material that is appropriate for effective DPRC is also a noteworthy development in this field of technology. This review gives a thorough introduction and discussion of the fundamental ideas, as well as the state-of-the-art and current trends in passive radiative cooling, and describes the cutting-edge materials and various photonic radiator structures that are useful in enhancing net cooling performance. This work also addresses a novel skylight window that offers passive cooling developed at the Åbo Akademi (ÅA) University, Finland. In conclusion, nanomaterials and nanoparticle-based coatings are preferred over all other approaches for commercialization in the future because of their low cost, the ability for large-scale production, simplicity in fabrication, and great potential for further increasing cooling performance.

Funder

Finnish National Agency for Education

Åbo Akademi University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3