Dynamic Thermal Transport Characteristics of a Real-Time Simulation Model for a 50 MW Solar Power Tower Plant

Author:

Huang Haoyu1,Xu Ershu12,Si Lengge1,Zhang Qiang3ORCID,Huang Qiang4

Affiliation:

1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

2. Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China

3. School of Electrical, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China

4. CGN New Energy Holding Co., Ltd., Beijing 100070, China

Abstract

A dynamic simulation model of a heliostat field and molten salt receiver system are developed on the STAR-90 simulation platform. In addition, a real-time simulation model coupling the above two models is built to study the photothermal conversion process of Delingha’s 50 MW solar power tower plant. The nonuniform and time-varying characteristics of the energy flux density on the receiver surface and the dynamic characteristics under different operating conditions are studied. The operational process of the receiver of a typical day is simulated. It was found that there was a strong positive correlation between the energy flux and DNI, and the maximum energy flux density on the surface of the heat absorbing tube panel moved from the first tube panel to the fourth in sequence from 12:00 to 18:00. At the same time, the energy flux density of the last four panels decreased gradually along the arrangement order of the panels. DNI, molten salt mass flow rate and inlet temperature step disturbance simulations are carried out, and the response curves of the molten salt outlet temperature and tube wall temperature are obtained. The conclusion of this paper has important guiding significance for the establishment of an operational strategy for photothermal coupling in a molten salt solar power tower plant.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. Driving Factors and Decoupling Analysis on Industrial Energy Consumption in China;Ma;Stat. Inf. Forum,2021

2. Review and Outlook on the International Renewable Energy Development;Li;Energy Built Environ.,2020

3. A review on solar energy use in industries;Mekhilef;Renew. Sustain. Energy Rev.,2011

4. Perspective of concentrating solar power;He;Energy,2020

5. China’s energy storage industry: Develop status, existing problems and countermeasures;Yu;Renew. Sustain. Energy Rev.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3