Depressed Cardiac Mechanical Energetic Efficiency: A Contributor to Cardiovascular Risk in Common Metabolic Diseases—From Mechanisms to Clinical Applications

Author:

Juszczyk Albert,Jankowska Karolina,Zawiślak Barbara,Surdacki AndrzejORCID,Chyrchel Bernadeta

Abstract

Cardiac mechanical energetic efficiency is the ratio of external work (EW) to the total energy consumption. EW performed by the left ventricle (LV) during a single beat is represented by LV stroke work and may be calculated from the pressure–volume loop area (PVLA), while energy consumption corresponds to myocardial oxygen consumption (MVO2) expressed on a per-beat basis. Classical early human studies estimated total mechanical LV efficiency at 20–30%, whereas the remaining energy is dissipated as heat. Total mechanical efficiency is a joint effect of the efficiency of energy transfer at three sequential stages. The first step, from MVO2 to adenosine triphosphate (ATP), reflects the yield of oxidative phosphorylation (i.e., phosphate-to-oxygen ratio). The second step, from ATP split to pressure–volume area, represents the proportion of the energy liberated during ATP hydrolysis which is converted to total mechanical energy. Total mechanical energy generated per beat—represented by pressure–volume area—consists of EW (corresponding to PVLA) and potential energy, which is needed to develop tension during isovolumic contraction. The efficiency of the third step of energy transfer, i.e., from pressure–volume area to EW, decreases with depressed LV contractility, increased afterload, more concentric LV geometry with diastolic dysfunction and lower LV preload reserve. As practical assessment of LV efficiency poses methodological problems, De Simone et al. proposed a simple surrogate measure of myocardial efficiency, i.e., mechano-energetic efficiency index (MEEi) calculated from LV stroke volume, heart rate and LV mass. In two independent cohorts, including a large group of hypertensive subjects and a population-based cohort (both free of prevalent cardiovascular disease and with preserved ejection fraction), low MEEi independently predicted composite adverse cardiovascular events and incident heart failure. It was hypothesized that the prognostic ability of low MEEi can result from its association with both metabolic and hemodynamic alterations, i.e., metabolic syndrome components, the degree of insulin resistance, concentric LV geometry, LV diastolic and discrete systolic dysfunction. On the one part, an increased reliance of cardiomyocytes on the oxidation of free fatty acids, typical for insulin-resistant states, is associated with both a lower yield of ATP per oxygen molecule and lesser availability of ATP for contraction, which might decrease energetic efficiency of the first and second step of energy transfer from MVO2 to EW. On the other part, concentric LV remodeling and LV dysfunction despite preserved ejection fraction can impair the efficiency of the third energy transfer step. In conclusion, the association of low MEEi with adverse cardiovascular outcome might be related to a multi-step impairment of energy transfer from MVO2 to EW in various clinical settings, including metabolic syndrome, diabetes, hypertension and heart failure. Irrespective of theoretical considerations, MEEi appears an attractive simple tool which couldt improve risk stratification in hypertensive and diabetic patients for primary prevention purposes. Further clinical studies are warranted to estimate the predictive ability of MEEi and its post-treatment changes, especially in patients on novel antidiabetic drugs and subjects with common metabolic diseases and concomitant chronic coronary syndromes, in whom the potential relevance of MEE can be potentiated by myocardial ischemia.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3